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Outline and collaborators

1. Finite frames
2. Sigma-Delta quantization − theory and implementation
3. Sigma-Delta quantization − number theoretic estimates

Collaborators: Matt Fickus (frame force); Alex Powell and Özgür Yilmaz
(Σ− ∆ quantization); Alex Powell, Aram Tangboondouangjit, and Özgür
Yilmaz (Σ − ∆ quantization and number theory).
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Finite Frames

Frames
Frames F = {en}N

n=1 for d-dimensional Hilbert space H, e.g., H = Kd,
where K = C or K = R.

Any spanning set of vectors in Kd is a frame for Kd.
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Finite Frames

Frames
Frames F = {en}N

n=1 for d-dimensional Hilbert space H, e.g., H = Kd,
where K = C or K = R.

Any spanning set of vectors in Kd is a frame for Kd.

F ⊆ Kd is A-tight if

∀x ∈ K
d, A‖x‖2 =

N∑

n=1

|〈x, en〉|2

If {en}N
n=1 is a finite unit norm tight frame (FUN-TF) for Kd, with

frame constant A, then A = N/d.

Let {en} be an A-unit norm TF for any separable Hilbert space H.
A ≥ 1, and A = 1 ⇔ {en} is an ONB for H (Vitali).
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The geometry of finite tight frames

The vertices of platonic solids are FUN-TFs.
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The geometry of finite tight frames

The vertices of platonic solids are FUN-TFs.

Points that constitute FUN-TFs do not have to be equidistributed,
e.g., ONBs and Grassmanian frames.

FUN-TFs can be characterized as minimizers of a “frame potential
function” (with Fickus) analogous to

Coulomb’s Law.
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Frame force and potential energy

F : Sd−1 × Sd−1 \ D −→ R
d

P : Sd−1 × Sd−1 \ D −→ R,

where P (a, b) = p(‖a − b‖), p′(x) = −xf(x)

Coulomb force

CF (a, b) = (a − b)/‖a − b‖3
, f(x) = 1/x3
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CF (a, b) = (a − b)/‖a − b‖3
, f(x) = 1/x3

Frame force

FF (a, b) =< a, b > (a − b), f(x) = 1 − x2/2

Finite frames and Sigma-Delta quantization – p.5/??



Frame force and potential energy

F : Sd−1 × Sd−1 \ D −→ R
d

P : Sd−1 × Sd−1 \ D −→ R,

where P (a, b) = p(‖a − b‖), p′(x) = −xf(x)

Coulomb force

CF (a, b) = (a − b)/‖a − b‖3
, f(x) = 1/x3

Frame force

FF (a, b) =< a, b > (a − b), f(x) = 1 − x2/2

Total potential energy for the frame force

TFP ({xn}) = ΣN
m=1Σ

N
n=1| < xm, xn > |2
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Characterization of FUN-TFs

For the Hilbert space H = Rd and N , consider
{xn}N

1 ∈ Sd−1 × ... × Sd−1 and

TFP ({xn}) = ΣN
m=1Σ

N
n=1| < xm, xn > |2.

Theorem Let N ≤ d. The minimum value of TFP , for the frame
force and N variables, is N ; and the minimizers are precisely the
orthonormal sets of N elements for R

d.
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Theorem Let N ≥ d. The minimum value of TFP , for the frame
force and N variables, is N2/d; and the minimizers are precisely
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Characterization of FUN-TFs

For the Hilbert space H = Rd and N , consider
{xn}N

1 ∈ Sd−1 × ... × Sd−1 and

TFP ({xn}) = ΣN
m=1Σ

N
n=1| < xm, xn > |2.

Theorem Let N ≤ d. The minimum value of TFP , for the frame
force and N variables, is N ; and the minimizers are precisely the
orthonormal sets of N elements for R

d.

Theorem Let N ≥ d. The minimum value of TFP , for the frame
force and N variables, is N2/d; and the minimizers are precisely
the FUN-TFs of N elements for R

d.

Problem Find FUN-TFs analytically, effectively, computationally.

Finite frames and Sigma-Delta quantization – p.6/??



Sigma-Delta quantization− theory and implementation

+ + +D Q
xn qn

-

un= un-1 + xn-qn

First Order Σ∆

Given u0 and {xn}n=1

un= un-1 + xn-qn
qn= Q(un-1 + xn)
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A quantization problem

Qualitative Problem Obtain digital representations for class X, suitable for
storage, transmission, recovery.
Quantitative Problem Find dictionary {en} ⊆ X:

1. Sampling [continuous range K is not digital]

∀x ∈ X, x =
∑

xnen, xn ∈ K (R or C).

2. Quantization. Construct finite alphabet A and

Q : X → {
∑

qnen : qn ∈ A ⊆ K}

such that |xn − qn| and/or ‖x − Qx‖ small.

Methods Fine quantization, e.g., PCM. Take qn ∈ A close to given xn.
Reasonable in 16-bit (65,536 levels) digital audio.

Coarse quantization, e.g., Σ∆. Use fewer bits to exploit redundancy.
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Quantization

Aδ
K = {(−K + 1/2)δ, (−K + 3/2)δ, . . . , (−1/2)δ, (1/2)δ, . . . , (K − 1/2)δ}
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Q(u) = arg min{|u − q| : q ∈ Aδ
K} = qu
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Setting

Let x ∈ Rd, ‖x‖ ≤ 1. Suppose F = {en}N
n=1 is a FUN-TF for Rd. Thus,

we have

x =
d

N

N∑

n=1

xnen

with xn = 〈x, en〉. Note: A = N/d, and |xn| ≤ 1.
Goal Find a “good” quantizer, given

Aδ
K = {(−K +

1

2
)δ, (−K +

3

2
)δ, . . . , (K − 1

2
)δ}.

Example Consider the alphabet A2
1 = {−1, 1}, and E7 = {en}7

n=1, with

en = (cos( 2nπ
7 ), sin( 2nπ

7 )).
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A2

1
= {−1, 1} and E7
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PCM

Replace xn ↔ qn = arg{min |xn − q| : q ∈ Aδ
K}. Then x̃ =

d

N

N∑

n=1

qnen

satisfies

‖x − x̃‖ ≤ d

N
‖

N∑

n=1

(xn − qn)en‖ ≤ d

N

δ

2

N∑

n=1

‖en‖ =
d

2
δ.

Not good!
Bennett’s “white noise assumption”
Assume that (ηn) = (xn − qn) is a sequence of independent, identically

distributed random variables with mean 0 and variance δ2

12 . Then the
mean square error (MSE) satisfies

MSE = E‖x − x̃‖2 ≤ d

12A
δ2 =

(dδ)2

12N
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Remarks
1. Bennett’s “white noise assumption” is not rigorous, and not true in

certain cases.

2. The MSE behaves like C/A. In the case of Σ∆ quantization of
bandlimited functions, the MSE is O(A−3) (Gray, Güntürk and
Thao, Bin Han and Chen). PCM does not utilize redundancy
efficiently.

3. The MSE only tells us about the average performance of a
quantizer.
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A2

1
= {−1, 1} and E7

Let x = ( 1
3 , 1

2 ), E7 = {(cos( 2nπ
7 ), sin( 2nπ

7 ))}7
n=1. Consider quantizers with

A = {−1, 1}.
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1
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Σ∆ quantizers for finite frames

Let F = {en}N
n=1 be a frame for Rd, x ∈ Rd.

Define xn = 〈x, en〉.
Fix the ordering p, a permutation of {1, 2, . . . , N}.
Quantizer alphabet Aδ

K

Quantizer function Q(u) = arg{min |u − q| : q ∈ Aδ
K}

Define the first-order Σ∆ quantizer with ordering p and with the
quantizer alphabet Aδ

K by means of the following recursion.

un − un−1 = xp(n) − qn

qn = Q(un−1 + xp(n))

where u0 = 0 and n = 1, 2, . . . , N .
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Stability

The following stability result is used to prove error estimates.
Proposition If the frame coefficients {xn}N

n=1 satisfy

|xn| ≤ (K − 1/2)δ, n = 1, · · · , N,

then the state sequence {un}N
n=0 generated by the first-order Σ∆

quantizer with alphabet Aδ
K satisfies |un| ≤ δ/2, n = 1, · · · , N.

The first-order Σ∆ scheme is equivalent to

un =
n∑

j=1

xp(j) −
n∑

j=1

qj , n = 1, · · · , N.
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Stability

The following stability result is used to prove error estimates.
Proposition If the frame coefficients {xn}N

n=1 satisfy

|xn| ≤ (K − 1/2)δ, n = 1, · · · , N,

then the state sequence {un}N
n=0 generated by the first-order Σ∆

quantizer with alphabet Aδ
K satisfies |un| ≤ δ/2, n = 1, · · · , N.

The first-order Σ∆ scheme is equivalent to

un =
n∑

j=1

xp(j) −
n∑

j=1

qj , n = 1, · · · , N.

Stability results lead to tiling problems for higher order schemes.
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Error estimate

Definition Let F = {en}N
n=1 be a frame for Rd, and let p be a

permutation of {1, 2, . . . , N}. The variation σ(F, p) is

σ(F, p) =
N−1∑

n=1

‖ep(n) − ep(n+1)‖.
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Error estimate

Definition Let F = {en}N
n=1 be a frame for Rd, and let p be a

permutation of {1, 2, . . . , N}. The variation σ(F, p) is

σ(F, p) =
N−1∑

n=1

‖ep(n) − ep(n+1)‖.

Theorem Let F = {en}N
n=1 be an A-FUN-TF for Rd. The

approximation

x̃ =
d

N

N∑

n=1

qnep(n)

generated by the first-order Σ∆ quantizer with ordering p and with
the quantizer alphabet Aδ

K satisfies

‖x − x̃‖ ≤ (σ(F, p) + 1)d

N

δ

2
.
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Order is important
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Let E7 be the FUN-TF for R2 given by the 7th roots of unity. Randomly
select 10,000 points in the unit ball of R

2. Quantize each point using

the Σ∆ scheme with alphabet A1/4
4 . The figures show histograms for

||x − x̃|| when the frame coefficients are quantized in their natural order
x1, x2, x3, x4, x5, x6, x7 (left) and order x1, x4, x7, x3, x6, x2, x5 (right).
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Even – odd
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EN = {eN
n }N

n=1, e
N
n = (cos(2πn/N), sin(2πn/N)). Let x = ( 1

π ,
√

3
17 ).

x =
d

N

N∑

n=1

xN
n eN

n , xN
n = 〈x, eN

n 〉.

Let x̃N be the approximation given by the 1st order Σ∆ quantizer with
alphabet {−1, 1} and natural ordering. log-log plot of ||x − x̃N ||.
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Improved estimates

EN = {eN
n }N

n=1, N th roots of unity FUN-TFs for R2, x ∈ R2,
||x|| ≤ (K − 1/2)δ.

Quantize x =
d

N

N∑

n=1

xN
n eN

n , xN
n = 〈x, eN

n 〉

using 1st order Σ∆ scheme with alphabet Aδ
K .

Theorem If N is even and large then ||x − x̃|| . δ log N
N5/4

.

If N is odd and large then δ
N . ||x − x̃|| ≤ (2π+1)d

N
δ
2 .

Remark The proof uses the analytic number theory approach developed

by Sinan Güntürk, and the theorem is true more generally.
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Harmonic frames

Zimmermann and Goyal, Kelner, Kovačević, Thao, Vetterli.

H = C
d. An harmonic frame {en}N

n=1 for H is defined by the rows
of the Bessel map L which is the complex N -DFT N × d matrix
with N − d columns removed.
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Harmonic frames

Zimmermann and Goyal, Kelner, Kovačević, Thao, Vetterli.

H = C
d. An harmonic frame {en}N

n=1 for H is defined by the rows
of the Bessel map L which is the complex N -DFT N × d matrix
with N − d columns removed.

H = Rd, d even. The harmonic frame {en}N
n=1 is defined by the

Bessel map L which is the N × d matrix whose nth row is

eN
n =

√
2

d

(
cos(

2πn

N
), sin(

2πn

N
), . . . , cos(

2π(d/2)n

N
), sin(

2π(d/2)n

N
)

)
.
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Harmonic frames

Zimmermann and Goyal, Kelner, Kovačević, Thao, Vetterli.

H = C
d. An harmonic frame {en}N

n=1 for H is defined by the rows
of the Bessel map L which is the complex N -DFT N × d matrix
with N − d columns removed.

H = Rd, d even. The harmonic frame {en}N
n=1 is defined by the

Bessel map L which is the N × d matrix whose nth row is

eN
n =

√
2

d

(
cos(

2πn

N
), sin(

2πn

N
), . . . , cos(

2π(d/2)n

N
), sin(

2π(d/2)n

N
)

)
.

Harmonic frames are FUN-TFs.

Let EN be the harmonic frame for R
d and let pN be the identity

permutation. Then

∀N, σ(EN , pN ) ≤ πd(d + 1).
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Error estimate for harmonic frames

Theorem Let EN be the harmonic frame for Rd with frame bound N/d.
Consider x ∈ Rd, ‖x‖ ≤ 1, and suppose the approximation x̃ of x is
generated by a first-order Σ∆ quantizer as before. Then

‖x − x̃‖ ≤ d2(d + 1) + d

N

δ

2
.

Hence, for harmonic frames (and all those with bounded variation),

MSEΣ∆ ≤ Cd

N2
δ2.
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Error estimate for harmonic frames

Theorem Let EN be the harmonic frame for Rd with frame bound N/d.
Consider x ∈ Rd, ‖x‖ ≤ 1, and suppose the approximation x̃ of x is
generated by a first-order Σ∆ quantizer as before. Then

‖x − x̃‖ ≤ d2(d + 1) + d

N

δ

2
.

Hence, for harmonic frames (and all those with bounded variation),

MSEΣ∆ ≤ Cd

N2
δ2.

This bound is clearly superior asymptotically to

MSEPCM =
(dδ)2

12N
.
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Σ∆ and “optimal” PCM

The digital encoding

MSEPCM =
(dδ)2

12N

in PCM format leaves open the possibility that decoding
(reconstruction) could lead to

“MSEopt
PCM” ≪ O(

1

N
).

Goyal, Vetterli, Thao (1998) proved

“MSEopt
PCM” ∼ C̃d

N2
δ2.

Theorem The first order Σ∆ scheme achieves the asymptotically optimal

MSEPCM for harmonic frames.
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Sigma-Delta quantization–number theoretic estimates

Proof of Improved Estimates theorem

If N is even and large then ||x − x̃|| . δ log N
N5/4 .

If N is odd and large then δ
N . ||x − x̃|| ≤ (2π+1)d

N
δ
2 .
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Sigma-Delta quantization–number theoretic estimates

Proof of Improved Estimates theorem

If N is even and large then ||x − x̃|| . δ log N
N5/4 .

If N is odd and large then δ
N . ||x − x̃|| ≤ (2π+1)d

N
δ
2 .

∀N, {eN
n }N

n=1 is a FUN-TF.
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Sigma-Delta quantization–number theoretic estimates

Proof of Improved Estimates theorem

If N is even and large then ||x − x̃|| . δ log N
N5/4 .

If N is odd and large then δ
N . ||x − x̃|| ≤ (2π+1)d

N
δ
2 .

∀N, {eN
n }N

n=1 is a FUN-TF.

x − x̃N =
d

N

( N−2∑

n=1

vN
n (fN

n − fN
n+1) + vN

N−1f
N
N−1 + uN

NeN
N

)

fN
n = eN

n − eN
n+1, vN

n =
n∑

j=1

uN
j , ũN

n =
uN

n

δ

Finite frames and Sigma-Delta quantization – p.27/??



Sigma-Delta quantization–number theoretic estimates

Proof of Improved Estimates theorem

If N is even and large then ||x − x̃|| . δ log N
N5/4 .

If N is odd and large then δ
N . ||x − x̃|| ≤ (2π+1)d

N
δ
2 .

∀N, {eN
n }N

n=1 is a FUN-TF.

x − x̃N =
d

N

( N−2∑

n=1

vN
n (fN

n − fN
n+1) + vN

N−1f
N
N−1 + uN

NeN
N

)

fN
n = eN

n − eN
n+1, vN

n =
n∑

j=1

uN
j , ũN

n =
uN

n

δ

To bound vN
n .
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Koksma Inequality

Discrepancy
The discrepancy DN of a finite sequence x1, . . . , xN of real
numbers is

DN = DN (x1, . . . , xN ) = sup0≤α<β≤1

∣∣∣∣
1
N

∑N
n=1 1[α,β)({xn})−(β−α)

∣∣∣∣,

where {x} = x − ⌊x⌋.
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Koksma Inequality

Discrepancy
The discrepancy DN of a finite sequence x1, . . . , xN of real
numbers is

DN = DN (x1, . . . , xN ) = sup0≤α<β≤1

∣∣∣∣
1
N

∑N
n=1 1[α,β)({xn})−(β−α)

∣∣∣∣,

where {x} = x − ⌊x⌋.
Koksma Inequality
g : [−1/2, 1/2) → R of bounded variation and
{ωj}n

j=1 ⊂ [−1/2, 1/2) =⇒

∣∣∣∣
1

n

n∑

j=1

g(ωj) −
∫ 1

2

− 1

2

g(t)dt

∣∣∣∣ ≤ Var(g)Disc
(
{ωj}n

j=1

)
.
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Discrepancy
The discrepancy DN of a finite sequence x1, . . . , xN of real
numbers is

DN = DN (x1, . . . , xN ) = sup0≤α<β≤1

∣∣∣∣
1
N

∑N
n=1 1[α,β)({xn})−(β−α)

∣∣∣∣,

where {x} = x − ⌊x⌋.
Koksma Inequality
g : [−1/2, 1/2) → R of bounded variation and
{ωj}n

j=1 ⊂ [−1/2, 1/2) =⇒

∣∣∣∣
1

n

n∑

j=1

g(ωj) −
∫ 1

2

− 1

2

g(t)dt

∣∣∣∣ ≤ Var(g)Disc
(
{ωj}n

j=1

)
.

With g(t) = t and ωj = ũN
j , |vN

n | ≤ nδDisc
(
{ũN

j }n
j=1

)
.
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Erdös-Turán Inequality

∃C > 0, ∀K, Disc
(
{ũN

n }j
n=1

)
≤ C

(
1

K
+

1

j

K∑

k=1

1

k

∣∣∣
j∑

n=1

e2πikeuN
n

∣∣∣
)

.
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Erdös-Turán Inequality

∃C > 0, ∀K, Disc
(
{ũN

n }j
n=1

)
≤ C

(
1

K
+

1

j

K∑

k=1

1

k

∣∣∣
j∑

n=1

e2πikeuN
n

∣∣∣
)

.

To approximate the exponential sum.
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Approximation of Exponential Sum

(1) Güntürk’sProposition
∀N, ∃XN ∈ BΩ/N

such that∀n = 0, . . . , N ,

XN (n) = uN
n + cn

δ

2
, cn ∈ Z

and ∀t,
∣∣∣X ′

N (t) − h
( t

N

)∣∣∣ .
1

N

(2) Bernstein’s Inequality
If x ∈ BΩ, then ‖x(r)‖∞ ≤
Ωr‖x‖∞

bBΩ = {T ∈ A′(bR) : suppT ⊆ [−Ω, Ω ]}

MΩ = {h ∈ BΩ : h′ ∈ L∞(R) and all zeros of h′ on [0, 1] are simple}

We assume ∃h ∈ MΩ such that ∀N and ∀ 1 ≤ n ≤ N, h(n/N) = xN
n .
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(1) Güntürk’sProposition
∀N, ∃XN ∈ BΩ/N

such that∀n = 0, . . . , N ,

XN (n) = uN
n + cn

δ

2
, cn ∈ Z

and ∀t,
∣∣∣X ′

N (t) − h
( t

N

)∣∣∣ .
1

N

(2) Bernstein’s Inequality
If x ∈ BΩ, then ‖x(r)‖∞ ≤
Ωr‖x‖∞

(1)+(2)

∀t,
∣∣∣X ′′

N (t) − 1

N
h′

( t

N

)∣∣∣ .
1

N2

bBΩ = {T ∈ A′(bR) : suppT ⊆ [−Ω, Ω ]}

MΩ = {h ∈ BΩ : h′ ∈ L∞(R) and all zeros of h′ on [0, 1] are simple}

We assume ∃h ∈ MΩ such that ∀N and ∀ 1 ≤ n ≤ N, h(n/N) = xN
n .
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Van der Corput Lemma

Let a, b be integers with a < b, and let f ∈ C2([a, b]) with
f ′′(x) ≥ ρ > 0 for all x ∈ [a, b] or f ′′(x) ≤ −ρ < 0 for all x ∈ [a, b] then

∣∣∣
b∑

n=a

e2πif(n)
∣∣∣ ≤

(∣∣f ′(b) − f ′(a)
∣∣ + 2

)( 4√
ρ

+ 3
)
.
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Van der Corput Lemma

Let a, b be integers with a < b, and let f ∈ C2([a, b]) with
f ′′(x) ≥ ρ > 0 for all x ∈ [a, b] or f ′′(x) ≤ −ρ < 0 for all x ∈ [a, b] then

∣∣∣
b∑

n=a

e2πif(n)
∣∣∣ ≤

(∣∣f ′(b) − f ′(a)
∣∣ + 2

)( 4√
ρ

+ 3
)
.

∀0 < α < 1, ∃Nα such that ∀N ≥ Nα,

∣∣∣
j∑

n=1

e2πikeuN
n

∣∣∣ . Nα +

√
kN1−α

2

√
δ

+
k

δ
.
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Choosing appropriateα and K

Putting α = 3/4, K = N1/4 yields

∃Ñ such that∀N ≥ Ñ , Disc
(
{ũN

n }j
n=1

)
.

1

N
1

4

+
N

3

4 log(N)

j
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Choosing appropriateα and K

Putting α = 3/4, K = N1/4 yields

∃Ñ such that∀N ≥ Ñ , Disc
(
{ũN

n }j
n=1

)
.

1

N
1

4

+
N

3

4 log(N)

j

Conclusion

∀n = 1, . . . , N, |vN
n | . δN

3

4 log N
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